Home
Class 12
MATHS
Let f(x)=15-|x-10| and g(x)=f(f(x)) then...

Let `f(x)=15-|x-10|` and `g(x)=f(f(x))` then `g(x)` is non differentiable at

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)>0 and g(x)>0 with f(x)>g(x)AA x in R are differentiable functions satisfying the conditions (i) f(0)=2,g(0)=1 , (ii) f'(x)=g(x) , (iii) g'(x)=f(x) then

Let f (x) = |x-2| and g (x) = f (f (x)). Then derivative of g at the point x =5 is

Let f(x) and g(x) be two functions which are defined and differentiable for all x>=x_(0). If f(x_(0))=g(x_(0)) and f'(x)>g'(x) for all x>x_(0), then prove that f(x)>g(x) for all x>x_(0).

Let f(x) = 15 -|x-10|, x in R . Then, the set of all values of x, at which the function, g(x) = f(f(x)) is not differentiable, is

Let f(x) = 15 -|x-10|, x in R . Then, the set of all values of x, at which the function, g(x) = f(f(x)) is not differentiable, is

If both f(x) and g(x) are non-differentiable at x=a then f(x)+g(x) may be differentiable at x=a

If f(x) and g(f) are two differentiable functions and g(x)!=0, then show trht (f(x))/(g(x)) is also differentiable (d)/(dx){(f(x))/(g(x))}=(g(x)(d)/(pi){f(x)}-g(x)(d)/(x){g(x)})/([g(x)]^(2))

If f(x)a n dg(f) are two differentiable functions and g(x)!=0 , then show trht (f(x))/(g(x)) is also differentiable d/(dx){(f(x))/(g(x))}=(g(x)d/x{f(x)}-g(x)d/x{g(x)})/([g(x)]^2)