Home
Class 12
MATHS
If cot.(A)/(2)=(b+c)/(a) find angle B...

If `cot.(A)/(2)=(b+c)/(a)` find angle B

Promotional Banner

Similar Questions

Explore conceptually related problems

If A, B, C are the angles of a triangle such that "cot"(A)/(2)="3 tan"(C )/(2) , then sin A, sin B, sin C are in

In a DeltaABC , if cot.(A)/(2)cot.(B)/(2)=c , cot.(B)/(2)cot.(C )/(2)=a and cot.(C)/(2)cot.(A)/(2)=b , then (1)/(s-a)+(1)/(s-b)+(1)/(s-c) equals

If cot ""^(A)/(2) : cot ""(B) /(2) : cot "" ( C )/(2) = 1: 4: 15 , then largest angle is

In Delta ABC, if (b-c)/(b+c)cot((A)/(2))+(b+c)/(b-c)tan((A)/(2))=2, then Delta ABC is (A) Right angled (B) Acute angled (C) Equilateral (D) Obtuse angled

In /_\ABC ,if a^(2)+b^(2)=3c^(2) ,then find the value of cot A+cot B-cot C?

In a triangle ABC if a^(2)+b^(2)=101c^(2) then find the value of (cot C)/(cot A+cot B)

In Delta ABC , if a=3 , b=4,c=6 then ("cot" (A)/(2)+"cot" (B)/(2)+ "cot" ( C)/(2))/("cot" A + "cot" B + "cot" C)=

If in a triangle ABC cot(A/2)+cot(C/2)=2cot(B/2) then find the minimum value of cot(B/2)