Home
Class 12
MATHS
Let P(x) = x^4 + ax^3 + bx^2 + cx + d, w...

Let `P(x) = x^4 + ax^3 + bx^2 + cx + d,` where `a, b, c, d in RR`.Suppose `P(0) = 6, P(1)=7, P(2) = 8 and P(3)=9,` then find the value of `P(4).`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let P(x)=x^(4)+ax^(3)+bx^(2)+cx+d, where a ,b,c,d in R. Suppose P(0)=6,P(1)=7,P(2)=8 and P(3)=9 , then find the value of P(4)

Let P(x) be the polynomial x^(3)+ax^(2)+bx+c whre a,b,c in R. If P(-3)=P(2)=0 and P'(-3)<0, which of the following is a possible value of c?

Let P(x) be the polynomial x^3+a x^2+b x+c , where a ,\ b ,\ c in R . If P(-3)=P(+2)=0 and P '(-3)<0 , which of the following is a possible value of ' c ' ? -27 (b) -18 (c) -6 (d) -3

Given P(x) =x^(4) +ax^(3) +bx^(2) +cx +d such that x=0 is the only real root of P'(x) =0 . If P(-1) < P(1), then in the interval [-1,1]

Given P(x) =x^(4) +ax^(3) +bx^(2) +cx +d such that x=0 is the only real root of P'(x) =0 . If P(-1) lt P(1), then in the interval [-1,1]

Given P(x) =x^(4) +ax^(3) +bx^(2) +cx +d such that x=0 is the only real root of P'(x) =0 . If P(-1) lt P(1), then in the interval [-1,1]

Given p(x) =x^4 +ax^3 +bx^2+cx +d such that x = 0 is the only real root of P'(x) =0. If P(-1) < P(1), then in the interval [-1,1]