Home
Class 12
MATHS
In a triangle ABC, AD is the altitude fo...

In a triangle ABC, AD is the altitude form- abcA (Fig. 12.9). Given `b>0, 2C = 23^@ and AD =(abc)/(b^2-c^2)` then `/_B`. is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

In a triangle ABC, AD is the altitude from A. If b gt c . angleC = 23^(@) and AD = (abc)/(b^(2) - c^(2), " then " angle B =

In a triange ABC, AD is the altitude from A. Given bgtc,/_C=23^0 and AD= (abc)/(b^2+c^2), then /_A…..

In a DeltaABC, AD is the altitude from A. Given bgt,c angleC=23^(@) and AD=(abc)/(b^(2)-c^(2)) , then angle B= ....

In a DeltaABC , AD is the altitude from A. Given b gt c, angleC=23^(@)" and "AD=(abc)/((b^(2)-c^(2)) , find angleB .

In a DeltaABC , AD is the altitude from A. Given b gt c, angleC=23^(@)" and "AD=(abc)/((b^(2)-c^(2)) , find angleB .

In triangle ABC,AD is the altitude from A If b>c,/_C=23^(0), and AD=(abc)/(b^(2))-c^(2) then /_B=

In DeltaABC, AD is the altitude from A, if b gt c, C=23^(0), AD=(abc)/(b^(2)-c^(2)) then angle B=

In a triangle ABC if A-B=(pi)/(2) , then C+2B is equal to