Home
Class 12
MATHS
Let |Z(r) - r| le r, for all r = 1,2,3…....

Let `|Z_(r) - r| le r`, for all `r = 1,2,3….,n`. Then `|sum_(r=1)^(n)z_(r)|` is less than

Promotional Banner

Similar Questions

Explore conceptually related problems

Let |Z_(r) - r| le r, Aar = 1,2,3….,n . Then |sum_(r=1)^(n)z_(r)| is less than

Let |Z_(r) - r| le r, Aar = 1,2,3….,n . Then |sum_(r=1)^(n)z_(r)| is less than

Let |Z_(r) - r| le r, Aar = 1,2,3….,n . Then |sum_(r=1)^(n)z_(r)| is less than

sum_(r=1)^(n)(3^(r)-r)=

Let |z_r-r|lt=r ,AAr=1,2,3,... ,n Then |sum_(r=1)^n Z_r| is less than n b. 2n c. n(n+1) d. (n(n+1))/2

Let |z_r-r|lt=r ,AAr=1,2,3,... ,n Then |sum_(r=1)^n Z_r| is less than n b. 2n c. n(n+1) d. (n(n+1))/2

Let |z_r-r|lt=r ,AAr=1,2,3,... ,n Then |sum_(r=1)^n Z_r| is less than a. n b. 2n c. n(n+1) d. (n(n+1))/2

Find sum_(r=1)^n = r(r - 3) (r - 2)

If sum_(r=1)^(n)I(r)=2^(n)-1 then sum_(r=1)^(n)(1)/(I_(r)) is