Home
Class 12
MATHS
The value of lim(xrarr0)(log(1+2x))/(5x)...

The value of `lim_(xrarr0)(log(1+2x))/(5x)+lim_(xrarr2)(x^(4)-2^(4))/(x-2)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(xrarr0)(1-cos(x/3))/x^2'

The value of lim_(xrarr0)""(log(1+2x))/(x) is equal to

The value of lim_(xrarr0) (e^x-(x+x))/(x^2) ,is

The value of lim_(xrarr0) (e^x-(x+x))/(x^2) ,is

The value of lim_(xrarr0)(1-cos4x)/x^2 is

The value of lim_(xrarr0)(1-cos4x)/x^2 is

lim_(xrarr0) (e^(x^(2))-cosx)/(x^2) is equal to

lim_(xrarr0) (e^(x^(2))-cosx)/(x^2) is equal to

Evaluate: lim_(xrarr2) (x^(2)-4)/(x-2)

Evaluate: lim_(xrarr2) (x^(2)-4)/(x-2)