Home
Class 11
MATHS
limx->0 into^x e^(tx) /x dt is equal to...

`limx->0 int_o^x e^(tx) /x dt` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

lim x rarr0int_(o)^(x)(e^(tx))/(x)dt is equal to

If int_0^1 (e^t)/(1 + t) dt = a, then int_0^1 (e^t)/((1 + t)^(2))dt is equal to:

The value of int_(0)^(x)(4t)^(3) dt is equal to

lim_(x->0)1/x[int_y^a e^(sin^2t)dt-int_(x+y)^a e^(sin^2t)dt] is equal to

lim_(x->0)1/x[int_y^a e^(sin^2t)dt-int_(x+y)^a e^(sin^2t)dt] is equal to

lim_(x->0) 1/x [int_y ^a)e^(sin^2t) dt-int_(x+y) ^a)e^(sin^2t)dt] is equal to (a) e^(sin^(2)y) (b) sin2ye^(sin^(2)y (c) 0 (d) none of these

lim_(xrarroo)((int_(0)^(x)e^(t^(2))dt)^(2))/(int_(0)^(x)e^(2t^(2))dt) is equal to

lim_(xrarroo)((int_(0)^(x)e^(t^(2))dt)^(2))/(int_(0)^(x)e^(2t^(2))dt) is equal to