Home
Class 12
PHYSICS
A small particle of mass m moves in such...

A small particle of mass m moves in such a way that the potential energy `U=(1)/(2)m omega^(2)r^(2)`, where `omega` is a constant and r is the distance of the particle from the origin. Assuming Bohr's model of quantisation of angular momentum and circular orbits. Find the radius of the `n^(th)` orbit.

Promotional Banner

Similar Questions

Explore conceptually related problems

A small particle of mass m move in such a way the potential energy U = (1)/(2) m^(2) omega^(2) r^(2) where omega is a constant and r is the distance of the particle from the origin. Assuming Bohr's model of quantization of angular momentum and circular orbits , show that radius of the nth allowed orbit is proportional to √n

A small particle of mass m move in such a way the potential energy U = (1)/(2) m^(2) omega^(2) r^(2) when a is a constant and r is the distance of the particle from the origin Assuming Bohr's model of quantization of angular momentum and circular orbits , show that radius of the nth allowed orbit is proportional to in

A small particle of mass m move in such a way the potential energy (U = (1)/(2) m^(2) omega^(2) r^(2)) when a is a constant and r is the distance of the particle from the origin Assuming Bohr's model of quantization of angular momentum and circular orbits , show that radius of the nth allowed orbit is proportional to in

A small particle of mass m move in such a way the potential energy U = (1)/(2) m^(2) omega^(2) r^(2) when a is a constant and r is the distance of the particle from the origin Assuming Bohr's model of quantization of angular momentum and circular orbits , show that radius of the nth allowed orbit is proportional to in

A small particle of mass m moves in such a way that the potential energy U = ar^(2) where a is a constant and r is the distance of the particle from the origin. Assuming Bohr's model of quantization of angular momentum and circular orbits, find the radius of n^(th) allowed orbit.

A small particle of mass m moves in such a way that the potential energy U=ar^(2) where a is a constant and r is the distance of the particle from the origin. Assuming Bohr's model of quantization of angular momentum and circular orbits, find the radius of n^(th) allowed orbit.

A small particle of mass m moves in such a way that the potential energy U = ar^2 , where a is constant and r is the distance of the particle from the origin. Assuming Bhor model of quantization of angular momentum and circular orbits, find the rodius of nth allowed orbit.

A small particle of mass m moves in such a way that the potential energy U = ar^2 , where a is constant and r is the distance of the particle from the origin. Assuming Bhor model of quantization of angular momentum and circular orbits, find the rodius of nth allowed orbit.