Home
Class 12
PHYSICS
R त्रिज्या के किसी एकसमान आवेशित ठोस गोल...

R त्रिज्या के किसी एकसमान आवेशित ठोस गोले के पृष्ठ का विभव `V_(0)` है (`oo` के सापेक्ष मापा गया)। इस गोले के लिए, `(3V_(0))/2,(5V_(0))/4,(3V_(0))/4` तथा `(V_(0))/4` विभवों वाले समविभवी पृष्ठों की त्रिज्याएँ, क्रमशः `R_(1), R_(2), R_(3)` तथा `R_(4)` हैं, तो

Promotional Banner

Similar Questions

Explore conceptually related problems

A uniformly charged solid sphere of radius R has potential V_(0) (measured with respect to oo ) on its surface. For this sphere the equipotential surfaces with potentials (3V_(0))/(2) , (5 V_(0))/(4), (3V_(0))/(4) and (V_(0))/(4) have radius R_(1), R_(2), R_(3) and R_(4) respecatively. Then

A uniformly charged solid shpere fo radius R has potential V_(0) (measured with respect to oo ) on its surface. For this sphere the equipotentail surfaces with potentials (3V_(0))/(2) , (5 V_(0))/(4), (3V_(0))/(4) and (V_(0))/(4) have radius R_(1), R_(2), R_(3) and R_(4) respecatively. Then

A uniformly charged solid shpere fo radius R has potential V_(0) (measured with respect to oo ) on its surface. For this sphere the equipotentail surfaces with potentials (3V_(0))/(2) , (5 V_(0))/(4), (3V_(0))/(4) and (V_(0))/(4) have radius R_(1), R_(2), R_(3) and R_(4) respecatively. Then

A uniformly charged solid sphere of radius R has potential V_(0) (measured with respect to oo ) on its surface. For this sphere the equipotential surfaces with potentials (3V_0)/(2),(5V_0)/(4), (3V_0)/(4) and (V_0)/(4) have radius R_(1), R_(2), R_(3) and R_(4) respectively. Then

A hollow sphere is melted to form small identical hollow spheres. Inner and outer radius of the bigger sphere are 4 cm and 6 cm respectively. If inner and outer radius of the smaller sphere are 2cm and 3 cm respectively, then how many smaller spheres can be formed? एक खाली गोले को पिघलाकर समान खाली छोटे गोले बनाए गए हैं। बड़े गोले की आंतरिक तथा बाह्य त्रिज्या क्रमशः 4सेमी तथा 6सेमी है। यदि छोटे गोले की आंतरिक तथा बाह्य त्रिज्या क्रमशः 2 सेमी तथा 3 सेमी है, तो कितने छोटे गोले बन सकते हें?