Home
Class 12
PHYSICS
Differential equation for a particle per...

Differential equation for a particle performing linear SHM is given by `(d^(2)x)/(dt^(2))+3xx=0`, where x is the displacement of the particle. The frequency of oscillatory motion is

Promotional Banner

Similar Questions

Explore conceptually related problems

The differential equation of a particle performing a S.H.M. is (d^(2)x)/(dt^(2))+ 64x=0 . The period of oscillation of the particle is

The equation of SHM of a particle is given as 2(d^(2)x)/(dt^(2))+32x=0 where x is the displacement from the mean position. The period of its oscillation ( in seconds) is -

The equation of motion of a particle of mass 1g is (d^(2)x)/(dt^(2)) + pi^(2)x = 0 , where x is displacement (in m) from mean position. The frequency of oscillation is (in Hz)

The equation of motion of a particle of mass 1g is (d^(2)x)/(dt^(2)) + pi^(2)x = 0 , where x is displacement (in m) from mean position. The frequency of oscillation is (in Hz)

The equation of motion of a particle of mass 1g is (d^(2)x)/(dt^(2)) + pi^(2)x = 0 , where x is displacement (in m) from mean position. The frequency of oscillation is (in Hz)

Passage XI) The differential equation of a particle undergoing SHM is given by a(d^(2)x)/(dt^(2)) +bx = 0. The particle starts from the extreme position. The time period of osciallation is given by

Passage XI) The differential equation of a particle undergoing SHM is given by a(d^(2)x)/(dt^(2)) +bx = 0. The particle starts from the extreme position. The time period of osciallation is given by

The differential equation of a particle undergoing SHM is given by a a(d^(2)"x")/(dt^(2))+b"x"=0 ltbr.gt The particle starts from the extreme position The equation of motion may be given by :

The motion of a particle is described by 9(d^(2)x)/(dt^(2))+25x=80 where x is displacement and t is time. Angular frequency of small oscillations of the particle

For a particle performing SHM , equation of motion is given as (d^(2))/(dt^(2)) + 4x = 0 . Find the time period