Home
Class 11
MATHS
If A + B + C = 2s, then prove that sin (...

If A + B + C = 2s, then prove that sin (s - A) sin (s - B) + sin s. sin (s - C) = sin A sin B .

Promotional Banner

Similar Questions

Explore conceptually related problems

If A + B + C = 2S, prove that sin (S- A) sin (S - B) +sin S sin (S-C) = sin A sin B

If A + B + C = 180^@ , then prove that sin 2 A+ sin 2B + sin 2C = 4 sin A sin B sin C

If A + B + C = 180^@ , then prove that sin 2 A+ sin 2B + sin 2C = 4 sin A sin B sin C

If A + B + C = 180^(@) , prove that sin(B + C - A) + sin (C + A - B) + sin(A + B + C) = 4 sin A sin B sin C.

If A + B + C = 2S, then prove that sin (SA) + sin (SB) + sin C = 4cos ((Sa) / (2)) cos ((sb) / (2)) sin ((c) / (2))

If A+B +C =2S, prove that : sin (S - A) + sin (S- B) + sin (S-C)-sinS= 4 sin frac (A)(2) sin frac (B)(2) sin frac (C)(2) .

If A+B+C=0 , then prove that sin 2A + sin 2B+ sin 2C=-4sin A sin B sin C .

If A + B + C = pi , prove that sin 2A + sin 2B + sin 2C= 4 sin A sin B sin C

If A+B+C =180^(@) then prove that sin 2A + sin 2B+ sin 2C = 4 sin A sin B sin C