Home
Class 12
MATHS
If A^(2)-A+I=0, then A^(-1)=...

If `A^(2)-A+I=0`, then `A^(-1)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

A square nonsingular matrix satisfies A^(2)-A+2I=0 then A^(-1)=

If A={:[(1+i,-i),(i,1+i)]:}," where "i=sqrt(-1)," and "A^(2)-2A+I=0," then ":A^(-1)=

If A^(2)-A+I=0 then find A^(-1) .In terms of A and I

A nonsingular matrix A satisfies A^2-A+2 I=0 , then A^-1=

A square non-singular matrix A satisfies A^2-A+2I=0," then "A^(-1) =

A square non-singular matrix A satisfies A^2-A+2I=0," then "A^(-1) =

A square non-singular matrix A satisfies A^2-A+2I=0," then "A^(-1) =

A square non-singular matrix A satisfies A^2-A+2I=0," then "A^(-1) =

If A is a square matrix and |A|!=0 and A^(2)-7A+I=0 ,then A^(-1) is equal to (I is identity matrix)