Home
Class 11
MATHS
prove that (1-1/(2^2))(1-1/(3^2))(1-1/(4...

prove that `(1-1/(2^2))(1-1/(3^2))(1-1/(4^2))(1-1/(n^2))=(n+1)/(2n)` for all natural numbers , `n>=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following by the principle of mathematical induction: (1-1/(2^2))(1-1/(3^2))(1-1/(4^2))------(1-1/(n^2))=(n+1)/(2n) for all natural numbers \ ngeq2.

Prove the following by the principle of mathematical inductiten: (1-(1)/(2^(2)))(1-(1)/(3^(2)))(1-(1)/(4^(2)))(1-(1)/(n^(2)))=(n+1)/(2n) or all natural numbers n>=2.

1+5+9+...+(4n-3)=n(2n-1) for all natural numbers n

Prove the following by using the principle of mathematical induction for all n in N (1-(1)/(2^2)) (1-(1)/(3^2))(1-(1)/(4^2))…….(1-(1)/(n^2)) = (n+1)/(2n) " " n >= 2

Prove that (1)/(n+1)+(1)/(n+2)+...+(1)/(2n)>(13)/(24) ,for all natural number n>1

Prove that , (1)/(n+1) + (1)/(n+2) + ………….+ (1)/(2n) gt 13/24 for all natural numbers n > 1

Prove that 1/(n+1)+1/(n+2)+...+1/(2n)> 13/24 ,for all natural number n>1 .

Prove that 1/(n+1)+1/(n+2)+...+1/(2n)> 13/24 ,for all natural number n>1 .

Prove that (1)/(n!)+(1)/(2!(n-2)!)+(1)/(4!(n-4)!)+...=(1)/(n!)2^(n-1)

Prove that (1)/(2)+(1)/(2^(2))+(1)/(2^(3))+.......+(1)/(2^(n))=1-(1)/(2^(n)),n in N