Home
Class 12
MATHS
log(tan^(-1)x)...

`log(tan^(-1)x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the derivative of y = log(tan^-1x) .

If f(x)=int((1-ln(tan^(-1)x))/(1+(ln(tan^(-1)x))^(2)))^(2)(dx)/(1+x^(2)) then f(tan1)-f(tan(1)/(e)) is equal to

int e^(log(1+tan^(2)x))dx=

int e^(log(1+tan^(2)x))dx=

If log y=tan^(-1)x, show that (1+x^(2))y_(2)+(2x-1)y_(1)=0

(d)/(dx)(e^((1)/(2)log(1+tan^(2)x))) is equal to

int(e^(ln tan^(-1)x))/(1+x^(2))dx

intsin^(-1)((2x)/(1+x^(2)))dx is equal to a) xtan^(-1)x-ln|sec(tan^(-1)x)|+C b) xtan^(-1)x+ln|sec(tan^(-1)x)|+C c) xtan^(-1)x-ln|cos(tan^(-1)x)|+C d)None of these