Home
Class 12
MATHS
Find the number of integers lying in the...

Find the number of integers lying in the interval (0,4) where the function `f(x)=(lim)_(nvecoo)(cos(pix)/2)^(2n)` is discontinuous

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the number of integers lying in the interval (0,4) where the function f(x)=(lim)_(n->oo)(cos( pix/2))^(2n) is discontinuous

Find the number of integers lying in the interval (0,4) where the function f(x)=lim_(n rarr oo)(cos(pi x)/(2))^(2n) is discontinuous

The function f(x)=sin""(pix)/(n!)-cos""(pix)/((n+1)!) is :

Discuss the continuity of f(x)=("lim")_(nvecoo)cos^(2n)xdot

Discuss the continuity of f(x)in[0,2],w h e r ef(x)=(lim)_(nvecoo)(s in(pix)/2)^(2n)

Let f(x)=[x^3 - 3] , where [.] is the greatest integer function, then the number of points in the interval (1,2) where function is discontinuous is (A) 4 (B) 5 (C) 6 (D) 7

Let f(x)=[x^3 - 3], where [.] is the greatest integer function, then the number of points in the interval (1,2) where function is discontinuous is (A) 4 (B) 5 (C) 6 (D) 7

Discuss the continuity of f(x) in [0, 2], where f(x)=(lim)_(n->oo)(sin(pix)/2)^(2n)dot

Let f(x) = [x^3 - 3] where [.] denotes the greatest integer function Then the number of points in the interval ( 1, 2) where the function is discontinuous, is

Discuss the continuity of f(x)=(lim)_(nvecoo)(x^(2n)-1)/(x^(2n)+1)