Home
Class 12
MATHS
Let [x] denote the greatest integer less...

Let [x] denote the greatest integer less than or equal to x and g (x) be given by`g(x)={{:(,[f(x)],x in (0","pi//2) uu (pi//2","pi)),(,3,x=(pi)/(2)):}`
`"where", f(x)=(2(sin x-sin^(n)x)+|sinx-sin^(n)x|)/(2(sinx-sin^(n)x)-|sinx-sin^(n)x|),n in R^(+)` then at `x=(pi)/(2),g(x)`, is

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=sin[pi^(2)]x+sin[-pi^(2)]x where [x] denotes the greatest integer less than or equal to x then

If f(x)=|(sin x+sin x 2x+sin3x,sin2x,sin3x),(3+4sinx,3,4sinx),(1+sinx,sinx,1)|, then the value of int_0^(pi/2) f(x) dx is

If f(x)=|(sin x+sin 2x+sin3x,sin2x,sin3x),(3+4sinx,3,4sinx),(1+sinx,sinx,1)|, then the value of int_0^(pi/2) f(x) dx is

f(x) = sinx - sin2x in [0,pi]

If [x] denotes the greatest integer less than or equal to x, the extreme values of the function f(x)=[1+sinx]+[1+sin2x]+[1+sin3x]+…+[1+sin nx], n in 1^+, x in(0,pi) are

For n in N, int_(0)^(2pi) (x sin^(2n)x)/(sin^(2n) x + cos^(2n) x) dx=

For x in ((-pi)/(2),(pi)/(2)) , the range of values of values of f(x)=2 +sinx+sin^(3)x+sin^(5)x…..oo