Home
Class 12
MATHS
"If "y=a^(x^(a^(x...oo)))", prove that "...

`"If "y=a^(x^(a^(x...oo)))", prove that "(dy)/(dx)=(y^(2)(logy))/(x[1-y(logx)(logy)]).`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=e^(x^(e ^(x^(...oo)))) ,show that, (dy)/(dx)=(y^(2)logy)/(x(1-y log x logy)) .

If y=a^(x^(a^(x^(…oo)))) , show that, (dy)/(dx)=(y^(2)logy)/(x(1-y log x log y)) .

If y=a^(x^(a^(x^......)^oo))), \ p rov et h a t \ (dy)/(dx)=(y^2logy)/(x(1-ylogxdotlogy)

If y^x=e^(y-x) , prove that (dy)/(dx)=((1+logy)^2)/(logy)

If y^x=e^(y-x) , prove that (dy)/(dx)=((1+logy)^2)/(logy)

If y=x^(y^(x)) , prove that, (dy)/(dx)=(y log y(1+x logx log y))/(x logx(1-x logy)) .

x(dy)/(dx)=y(logy-logx+1)

x(dy)/(dx)=y(logy-logx-1)

x(dy)/(dx)=y(logy-logx+1)

If x^y= y^x , prove that (dy)/(dx)=((y/x-logy))/((x/y-logx))