Home
Class 12
MATHS
यदि फलन f, ((pi)/(6), (pi)/(3)) पर इस प्...

यदि फलन `f, ((pi)/(6), (pi)/(3))` पर इस प्रकार परिभाषित है की `f(x) = {((sqrt2 cos x-1)/(cot x-1),x ne (pi)/(4)),(k,x= (pi)/(4)):}` सतत है, तो k बराबर है

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x) = {{:((k cosx )/((pi - 2x)"," if x ne (pi)/(2))),(3"," if x = (pi)/(2)):} at x = (pi)/(2) .

If f(x) = {((1-sqrt2sinx)/(pi-4x), x ne pi/4),(a, x = pi/4):} is continuous at pi/4 , then a =

If f(x ) = (sin^(2)x)/(1+cot x) + (cos^(2))/(1+tan x) then f((pi)/(4)) is

f(x) ={{:((1-sqrt(2)sin x)/(pi -4x),"if "x ne (pi)/(4)),("k","if "x=(pi)/(4)):} continous at x=(pi)/(4) , then K=

If f(x) = {{:(1 - sqrt(2 sinx)/(pi - 4r ) " if " x ne (pi)/(4)),(a " if " x = (pi)/(4)):} continuous at (pi)/(4) then a =

If the function f defined on (pi/6,pi/3) by {{:((sqrt2 cos x -1)/(cot x -1)" , " x ne pi/4),(" is continuous,"),(" k , "x=pi/4 ):} then k is equal to

If the function f defined on (pi/6,pi/3) by {{:((sqrt2 cos x -1)/(cot x -1)" , " x ne pi/4),(" is continuous,"),(" k , "x=pi/4 ):} then k is equal to

f(x)= (sqrt2 cos x-1)/(cot x-1), x ne (pi)/(4) . If the function f(x) is continuous at x= (pi)/(4) then find f((pi)/(4))