Home
Class 12
MATHS
i^(13)+i^(18)+i^(31)+n=0 In the equati...

`i^(13)+i^(18)+i^(31)+n=0`
In the equation above, what is the value of n in simplest form?

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of i^n + i^-n

If z=i^(-39) , then simplest form of z is equal to a +i. The value of a is

If sum_(i=1)^(n) cos theta_(i)=n , then the value of sum_(i=1)^(n) sin theta_(i) .

If sum_(i=1)^(n) cos theta_(i)=n , then the value of sum_(i=1)^(n) sin theta_(i) .

If sum_(i=1)^(n) cos theta_(i)=n , then the value of sum_(i=1)^(n) sin theta_(i) .

If sum_(i=1)^(n) cos theta_(i)=n , then the value of sum_(i=1)^(n) sin theta_(i) .

If sum_(i)^(n)cos theta_(i)=n, then the value of sum_(i=1)^(n)sin theta_(i)

If n is an odd positive integer then the value of (1+ i^(2n) + i^(4n) + i^(6n) ) ?

If n in N, then find the value of i^(n)+i^(n+1)+i^(n+2)+i^(n+3)