Home
Class 11
MATHS
सबसे छोटा घनात्मक पूर्णाक n जिसके लिए ((...

सबसे छोटा घनात्मक पूर्णाक n जिसके लिए `((1+i)/(1-i))^n = 1` हो, है =

Promotional Banner

Similar Questions

Explore conceptually related problems

किसी घनात्मक पूर्णांक n के लिए यदि, (1)/(sqrt(4)+sqrt(5))+(1)/(sqrt(5)+sqrt(6)) +(1)/(sqrt(6)+sqrt(7)) +..... + (1)/(sqrt(n)+sqrt(n+1))=5 है तो n का मान क्या होगा?

The smallest integer n such that ((1 + i)/(1-i))^(n) = 1 is

(1+i)^(2 n)+(1-i)^(2 n), n in z is

Find the lowest value of n such that ((1-i)/(1+i))^(n^(2))=1 , where n in N .

If ((1+i)/(1-i))^n =1 , then the smallest value of n is :

If ((1+i)/(1-i))^(n) = -1, n in N , then least value of n is

Show that (1-i)^(n)(1-(1)/(i))^(n)=2^(n) for all n in N

The smallest positive integer n for which ((1-i)/(1+i))^(n^(2)) = 1 where i=sqrt(-1) , is

The smallest positiv einteger n for which ((1+i)/(1-i))^n=1 where i=sqrt(-1) is