Home
Class 10
MATHS
9 sec^(2) A - 9tan^(2) A बराबर है...

`9 sec^(2) A - 9tan^(2) A` बराबर है

Promotional Banner

Similar Questions

Explore conceptually related problems

9 sec^(2) A - 9 tan^(2) A =

9 sec ^ 2 A - 9 tan ^ 2 A = ?

Choose the coorect option. Justify choice : 9 sec^(2)A - 9 tan^(2)A =

sin^2 36^@+ tan^2 60^@+ sec^2 30^@ + sin^2 54^@ is equal to / sin^2 36^@+ tan^2 60^@+ sec^2 30^@ + sin^2 54^@ बराबर है

9sec^2A-9tan^2 A is equal to

9sec^(2)A-9tan^(2)A is equal to (a)1(b)9(c)8 (d) 0

The value of tan^(2)∅+ cot^(2)∅− sec^(2)∅ cosec^(2)∅ is equal to: tan^(2)∅+ cot^(2)∅− sec^(2)∅ cosec^(2)∅ iका मान बराबर है :

If 10 sec^(2)x - 9tan^(2)x= 13 and 0^@le x lt 90^@ then x = _____

(sec∅ - tan∅)^2 (1 + sin∅)^2 ÷ sin^(2)∅ =? (sec∅ - tan∅)^2 (1 + sin∅)^2 ÷ sin^(2)∅ बराबर है :