Home
Class 12
MATHS
2tan^(-1)(-2) is equal to (a)-cos t^(-...

`2tan^(-1)(-2)` is equal to (a)`-cos t^(-1)((-3)/5)` (b) `-pi+cos^(-1)3/5` (c)`-pi/2+tan^(-1)(-3/4)` (d) `-picot^(-1)(-3/4)`

Promotional Banner

Similar Questions

Explore conceptually related problems

2tan^(-1)(-2) is equal to (a) -cos^(-1)((-3)/5) (b) -pi+cos^(-1)3/5 (c) -pi/2+tan^(-1)(-3/4) (d) -pi+cot^(-1)(-3/4)

2tan^(-1)(-2) is equal to (a)-cos t^(-1)((-3)/(5))(b)-pi+(cos^(-1)3)/(5)(c)-(pi)/(2)+tan^(-1)(-(3)/(4)) (d) -pi cot^(-1)(-(3)/(4))

cos^(-1)((3)/(5))+cos^(-1)((4)/(5))=(pi)/(2)

Prove that: sin^(-1)(-(4)/(5))=tan^(-1)(-(4)/(3))=co^(-1)(-(3)/(5))-pi

tan^(-1)sqrt(3)-sec^(-1)(-2) is equal to(a) pi (B) -pi/3 (C) pi/3 (D) (2pi)/3

The value of tan^(-1) (2) + tan^(-1) (3) is equal to a) (3pi)/(4) b) (pi)/(4) c) (pi)/(3) d) tan^(-1) (6)

tan^(-1)sqrt(3)-sec^(-1)(-2) is equal to(A) pi (B) -pi/3 (C) pi/3 (D) (2pi)/3

Evaluate the following: sin^(-1)(sin(pi/4)) (ii) cos^(-1)(cos(2pi/3)) tan^(-1)(tan(pi/3))

Prove that : tan^(-1)(1/2) + tan^(-1)(1/3) = tan^(-1)(3/5) + tan^(-1)(1/4) = pi/4

Prove that : tan^(-1)(1/2) + tan^(-1)(1/3) = tan^(-1)(3/5) + tan^(-1)(1/4) = pi/4