Home
Class 12
MATHS
The value of int0^ 1tan^(-1)((2x-1)/(1+...

The value of `int_0^ 1tan^(-1)((2x-1)/(1+x-x^2))dx` is (A) 1 (B) 0 (C) -1 (D) `pi/4`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_0^1 tan^(-1) ((2x-1)/(1+x-x^2))dx is:

The value of \int_{0}^{1}tan^(-1)((2x-1)/(1+x-x^2))dx is (A) 1 (B) 0 (C) -1 (D) pi/4

The value of int_0^(1) tan^(-1) ((2x-1)/(1+x-x^(2))) dx is

The value of int_(0)^(1)tan^(-1)((2x-1)/(1+x-x^(2)))dx is (A) 1 (B) 0(C)-1(D)(pi)/(4)

Prove that int_0^1 tan^-1((2x-1)/(1+x-x^2))dx=0

Prove that int_0^1 tan^-1((2x-1)/(1+x-x^2))dx=0

The value of int_0^1tan^(-1)((2x-1)/(1+x-x^2))dx ,\ is 1 b. -1 c. 0 d. pi//4

The value of int_0^1tan^(-1)((2x-1)/(1+x-x^2))dx ,\ is a. 1 b. -1 c. 0 d. pi//4

The value of int_0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is

The value of int_0^1 4x^3{(d^2)/(dx^2)(1-x^2)^5}dx is