Home
Class 12
MATHS
The function f(x)=sin^(-1)(2x-x^(2))+sqr...

The function `f(x)=sin^(-1)(2x-x^(2))+sqrt(2-(1)/(|x|)s)+(1)/([x^(2)])`
defined in the interval (where `[.]` is the greatest integer function)

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=sin^(-1)(x-x^(2))+sqrt(1-(1)/(|x|)+(1)/(x^(2)-1)) is defined in the interval where [l denotes the greatest integer function

If x^(2)+x+1-|[x]|=0, then (where [.] is greatest integer function) -

If f(x)= [sin^2x] (where [.] denotes the greatest integer function ) then :

If f(x) =[ sin ^(-1)(sin 2x )] (where, [] denotes the greatest integer function ), then

If f(x) =[ sin ^(-1)(sin 2x )] (where, [] denotes the greatest integer function ), then

The function f(x)=cos^(-1)((2[sin x|+|cos x|])/(sin^(2)x+2sin x+(11)/(4))) is defined if x belongs to (where [.] represents the greatest integer function)

f:(2,3)rarr(0,1) defined by f(x)=x-[x], where [.] represents the greatest integer function.

The domain of the function f(x)=(1)/([x^(2)-1] is (where [.] is greatest integer function)

Find the domain and range of the following function: f(x)=tan^(-1)(sqrt([x]+[-x]))+sqrt(2-|x|)+1/(x^(2)) (where [ ] denotes greatest integer function)

Find the domain and range of the following function: f(x)=tan^(-1)(sqrt([x]+[-x]))+sqrt(2-|x|)+1/(x^(2)) (where [ ] denotes greatest integer function)