Home
Class 12
MATHS
Let f(x) = ((1 - x(1+ |1-x | )) /(|1-x|)...

Let `f(x) = ((1 - x(1+ |1-x | )) /(|1-x|)) cos(1/(1-x))` for `x!=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=((1-x(1+|1-x|))/(|1-x|))cos((1)/(1-x)) for x!=1

Let f(x)=(1-x(1+|1-x|))/(|1-x|)cos(1/(1-x)) for x!=1. Then: (A)(lim)_(n->1^-)f(x) does not exist (B)(lim)_(n->1^+)f(x) does not exist (C)(lim)_(n->1^-)f(x)=0 (D)(lim)_(n->1^+)f(x)=0

Let f(x) = x - 1/x , then f' (-1) is

let ( f(x) = 1-|x| , |x| 1 ) g(x)=f(x+1)+f(x-1)

Let f(x)=sin^(-1)((1)/(|x^(2)-1|))+cos^(-1)((1-2|x|)/(3))

Let f(x) = x(1/(x - 1) + 1/x + 1/(x + 1)), x gt 1 , Then

Let f(x)=x((1)/(x-1)+(1)/(x)+(1)/(x+1)),x>1

Let f(x) =(x+1)^2-1,x ge -1 then {x: f(x) =f^(-1)(x) } =

If f(x) = (1-x)/(1+x) , then f[f(cos x)] =