Home
Class 12
MATHS
A function f : R to R Satisfies the f...

A function f : ` R to R ` Satisfies the following conditions
(i) `f (x) ne 0 AA x in R `
(ii) `f(x +y)= f(x) f(y) AA x, y, in R `
(iii) f(x) is differentiable
(iv ) f'(0) =2
The value of f(0) is

Promotional Banner

Similar Questions

Explore conceptually related problems

A function f : R to R Satisfies the following conditions (i) f (x) ne 0 AA x in R (ii) f(x +y)= f(x) f(y) AA x, y, in R (iii) f(x) is differentiable (iv ) f'(0) =2 lim_(xto 0) (f(x)-f(-x))/x

A function f : R to R Satisfies the following conditions (i) f (x) ne 0 AA x in R (ii) f(x +y)= f(x) f(y) AA x, y, in R (iii) f(x) is differentiable (iv ) f'(0) =2 lim_(xto 0) (f(x)-f(-x))/x

A function f : R to R Satisfies the following conditions (i) f (x) ne 0 AA x in R (ii) f(x +y)= f(x) f(y) AA x, y, in R (iii) f(x) is differentiable (iv ) f'(0) =2 The derivative of f(x) satisfies the equation

A function f : R to R Satisfies the following conditions (i) f (x) ne 0 AA x in R (ii) f(x +y)= f(x) f(y) AA x, y, in R (iii) f(x) is differentiable (iv ) f'(0) =2 The derivative of f(x) satisfies the equation

A function satisfies the conditions f(x+y)=f(x) + f(y), AA x, y in R then f is

Let R rarr R be a function such that f(x+y) = f(x)+f(y) AA x, y in R . If f(x) is differentiable at x= 0, then

f(x+y)=f(x).f(y)AA x,y in R and f(x) is a differentiable function and f'(0)=1,f(x)!=0 for any x.Findf(x)

A function f : R to R satisfies the equation f(x+y) = f (x) f(y), AA x, y in R and f (x) ne 0 for any x in R . Let the function be differentiable at x = 0 and f'(0) = 2. Show that f'(x) = 2 f(x), AA x in R. Hence, determine f(x)

A function f : R to R satisfies the equation f(x+y) = f (x) f(y), AA x, y in R and f (x) ne 0 for any x in R . Let the function be differentiable at x = 0 and f'(0) = 2. Show that f'(x) = 2 f(x), AA x in R. Hence, determine f(x)