Home
Class 12
MATHS
sin^(2)A+cos^(4)A=1-2sin^(2)A+2sin^(4)A...

sin^(2)A+cos^(4)A=1-2sin^(2)A+2sin^(4)A

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following identities: sin^(4)A+cos^(4)A=1-2sin^(2)A cos^(2)A

sin^(4)x+cos^(4)x=1-2sin^(2)x cos^(2)x

If (cos^(4)A)/(cos^(2)B)+(sin^(4)A)/(sin^(2)B)=1, Prove that: sin^(4)A+sin^(4)B=2sin^(2)A sin^(2)B

If (cos^(4)A)/(cos^(2)B)+(sin^(4)A)/(sin^(2)B)=1 then prove that (i)sin^(2)A+sin^(2)B=2sin^(2)A sin^(2)B(ii)(cos^(4)B)/(cos^(2)A)+(sin^(4)B)/(sin^(2)A)=1

Prove the following identities: sin^(4)A-cos^(4)A=sin^(2)A-cos^(2)A=2sin^(2)A-1=1-2cos^(2)A

Prove that : 2 sin^(2) A + cos^(4) A = 1 + sin^(4) A

if cos A+cos^(2)A=1 , then sin^(2)A+sin^(4)A=1

cos^(4)A-sin^(4)A is equal to 2cos^(2)A+1(b)2cos^(2)A-1(c)2sin^(2)A-1( d) 2sin^(2)A+1

2sin ^ (2) A + cos ^ (4) A-1 + sin ^ (4) 4

Prove the following identities : (1 - 2 sin^(2) A)^(2)/(cos^(4) A - sin^(4) A) = 2 cos^(2) A - 1