Home
Class 12
MATHS
cot^(-1)x+sin^(-1)(1)/(sqrt(5))=(pi)/(4)...

cot^(-1)x+sin^(-1)(1)/(sqrt(5))=(pi)/(4)

Promotional Banner

Similar Questions

Explore conceptually related problems

sin^(-1)((1)/(sqrt(5)))+sin^(-1)((1)/(sqrt(10)))=(pi)/(4)

Solution of equation cot^(-1) x + sin^(-1) . 1/sqrt5 = pi/4 is

Solution of equation cot^(-1) x + sin^(-1) . 1/sqrt5 = pi/4 is

Solution of equation cot^(-1) x + sin^(-1) . 1/sqrt5 = pi/4 is

Solution of equation cot^(-1) x + sin^(-1) . 1/sqrt5 = pi/4 is

If Cot^(-1)x+Sin^(-1)(1//sqrt5)=pi//4 , then the value of x is

cot((sin^(-1)1)/(sqrt(5))+(sin^(-4)2)/(sqrt(5)))

4(cot^(-1)3+csc^(-1)sqrt(5))=pi

Prove: sin^(-1)((1)/(sqrt(5)))+cot^(-1)3=(pi)/(4)

Statement 1: If x=(1)/(5 sqrt(2)) , then [x cos(cot^(-1)x)+sin(cot^(-1)x)]^(2)=(51)/(50) . Statement 2: tan["cot"^(-1)(1)/(5sqrt(2))-"sin"^(-1)(4)/(sqrt(17))]=(29)/(3) .