Home
Class 11
MATHS
Lim(n rarr oo)(1)/(n^(3)){1+3+6+...+(n(n...

Lim_(n rarr oo)(1)/(n^(3)){1+3+6+...+(n(n+1))/(2)}=

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo)2^(1/n)

lim_(n rarr oo)(n^(2))/(1+2+3+...+n)

lim_(n rarr oo)(n^(2))/(1+2+3+...+n)

lim_(n rarr oo)(n^(2))/(1+2+3+...+n)

lim_(n rarr oo)(n^(2))/(1+2+3+...+n)

lim_(n rarr oo)(n^(2))/(1+2+3+...+n)

lim_(n rarr oo)((-1)^(n)n)/(n+1)

lim_ (n rarr oo) ((1) / (n ^ (2)) + (2) / (n ^ (2)) + (3) / (n ^ (2)) ++ (n-1) / (n ^ (2)))

lim_(n rarr oo)(2^(n)+3^(n))^(1/n)

Show that lim_(n rarr oo)((1)/(n+1)+(1)/(n+2)+...+(1)/(6n))=log6