Home
Class 11
MATHS
" ii) "1,-a,a^(2),-a^(3),....n" terms (i...

" ii) "1,-a,a^(2),-a^(3),....n" terms (if "a!=1)

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the sum to indicated number of terms in each of the geometric progressions: 1,-a,a^(2)-a^(3),...n terms quad ( if a!=-1)

Find the sum of the indicated number of terms of each of the following geometric progressions: a. (i) sqrt(7),sqrt(21),3sqrt(7) ,…………..n terms. (ii) 2,-1/2,1/8 , …………….n terms 12 terms (iii) 1,1/3,1/9, ………………..,n terms 5 terms b. (i) x^(3),x^(5),x^(7) .......,n terms (x!= +-1) (ii) 1,-a,a^(2),-a^(3) ........, n terms (a!= -1) (iii) x^(2)-y^(2),x-y,(x-y)/(x+y) ................ , n terms (x+y!=1) .

Find the sum to indicated number of terms in each of the geometric progressions in Questions 7 to 10 : 1,-a,a^(2),-a^(3),..."n terms "(ifa ne-1)

Find the sum of the following geometric series: 1,-1,a^(2),-a^(3),rarr n terms (a!=1)

Find the sum of the GP : (i) sqrt(7)+sqrt(21)+3sqrt(7)+... to n terms (ii) 1-1/3+1/3^(2)-1/3^(3)+... to n terms (iii) 1-a+a^(2)-a^(3)+... to n terms (a ne 1) (iv) x^(3)+x^(5)+x^(7)+... to terms (v) x(x+y)+x^(2)(x^(2)+y^(2))+x^(3) (x^(3)+y^(3))+... to n terms

Find the sum of the following geometric series: 1,\ -a,\ a^2,-a^3,... to\ n terms (a!=1)

Find the sum to indicated number of terms in each of the geometric progressions in Exercises 1, - a, a^2, - a^3, .......n terms (if a ne -1 )

Find the sum to indicated number of terms of the geometric progressions given below:- 1,-a, a^2,-a^3 , ... n terms (if a ne -1 ).

Find the sum to indicated number of terms in each of the geometric progressions in Exercises 1, - a, a^2, - a^3, .......n terms (if a ne -1 )

Find the sum to indicated number of terms in each of the geometric progressions in Exercises 1, - a, a^2, - a^3, .......n terms (if a ne -1 )