Home
Class 11
MATHS
यदि x, y और z किसी गु० श्रे० के क्रमशः p...

यदि x, y और z किसी गु० श्रे० के क्रमशः p वां, q वां, r वां पद हों तो सिद्ध करें की
`x^(q-r)y^(r-p)z^(p-q)=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If p,q,r are in A.P. while x,y,z are in G.P., prove that x^(q-r)y^(r-p)z^(p-q)=1

If x,y,z are in G.P and p,q,r are in A.P then prove that x^(q-r) y^(r-p) z^(p-q)=1 .

If p, q, r are in A.P. while x, y, z are in G.P., prove that x^(q-r).y^(r-p).z^(p-q) =1 .

If x, y and z are the pth, qth, and rth, terms of a G.P respectively, then show that x^(q-r) . y^(r-p) . z^(p-q) = 1.

If the p^(th) , q^(th) and r^(th) terms of a G.P. are x , y , z respectively. then show that : x^(q-r) . y^(r-p).z^(p-q)=1

If the pth , qth , rth , terms of a GP . Are x,y,z respectively prove that : x^(q-r).y^(r-p).z^(p-q)=1

If x,y,z are respectively p^(th), q^(th) and r^(th) terms of a G.P show that x^(q-r) xx y^(r-p) xx z^(p-q)=1 .

The pth, qth and rth term of a G.P. are x, y, z respectively, then prove that- x^(q-r).y^(r-p).z^(p-q)=1 .