Home
Class 11
MATHS
" The number of integral values of ' "x"...

" The number of integral values of ' "x" ' satisfying the equation "tan^(-1)(3x)+tan^(-1)(5x)=tan^(-1)(7x)+tan^(-1)(2x)" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

The number of values of x satisfying the equation tan^(-1)(x+1)+tan^(-1)x+tan^(-1)(x-1)=tan^(-1)3x is ____

The value of x satisfying the equation tan^(-1)(2x)+tan^(-1)3x=(pi)/(4) is

Solve tan^(-1)(x-1) +tan^(-1) x +tan^(-1)(x+1)= tan^(-1)(3x) .

Solve : tan^(-1)(x-1)+tan^(-1)x+tan^(-1)(x+1)=tan^(-1)3x

Solve: tan^(-1)(x-1)+tan^(-1)x+tan^(-1)(x+1)= tan^(-1)3x.

Solve : tan^(-1)(x-1)+tan^(-1)x+tan^(-1)(x+1)=tan^(-1)3x

The value of x satisfying the equation tan^(-1)x + tan^(-1)((2)/(3)) = tan^(-1)((7)/(4)) is equal to

Sum of values x satisfying the equation sin^(-1)(x^(2)-5x+7)=2tan^(-1)1 is

The number of solutions of the equation tan^(-1)(x+1)+tan^(-1)x+tan^(-1)(x-1)=tan^(-1)3

Solve the equation tan^(-1)((x+1)/(x-1))+tan^(-1)((x-1)/x)=tan^(-1)(-7)