Home
Class 13
MATHS
[" Let "g(x)=xf(x)," where "],[f(x)={[x^...

[" Let "g(x)=xf(x)," where "],[f(x)={[x^(2)sin(1)/(x),:x!=0],[0,:x=0]" at "x=0]

Promotional Banner

Similar Questions

Explore conceptually related problems

g(x)=xf(x) , where f(x)=x"sin"(1)/(x),x!=0=0,x=0 . At x=0 :

Let g(x)=xf(x) , where f(x)={{:(x^(2)sin.(1)/(x),":",x ne0),(0,":",x=0):} . At x=0 ,

Let g(x)=xf(x) , where f(x)={{:(x^(2)sin.(1)/(x),":",x ne0),(0,":",x=0):} . At x=0 ,

If g(x)=xf(x), where f(x)={x sin((1)/(x));x!=00;x=0} then at x=0

Let f(x)=(2x+1)/(x),x!=0, where

Let f:R rarr R be defined by f(x)={x+2x^(2)sin((1)/(x)) for x!=0,0 for x=0 then

Let f(x)={0 for x=0x^(2)sin((pi)/(x)) for -1 1 or x<-1

Let f,g:R rarr R be two function diffinite f(x)={x sin((1)/(x)),x!=0; and 0,x=0 and g(x)=xf(x)

Let f(x)={{:(x sin.(1)/(x)",",x ne0),(0",",x=0):}} and g(x)={{:(x^(2)sin.(1)/(x)",", x ne 0),(0",", x=0):}} Discuss the graph for f(x) and g(x), and evaluate the continuity and differentiabilityof f(x) and g(x).