Home
Class 10
MATHS
If (ax + by)/a = (bx - ay)/b, then show...

If ` (ax + by)/a = (bx - ay)/b`, then show that each ratio is equal to x .

Promotional Banner

Similar Questions

Explore conceptually related problems

If (x + 2) is a common factor of x^(2) + ax + b and x^(2) + bx + a , then the ratio a : b is equal to

ax + by = c bx+ ay =1 +c

(ax+by)^(2)+(bx-ay)^(2)

If f(X) = (ax-b)/(bx-a) , show that f(f(x)) = x

If (ax+by)/(x+y)=(bx+az)/(x+z)=(ay+bz)/(y+z) and x+y+z=!0 then show that each ratio is (a+b)/2

If y=f(x)=(ax-b)/(bx-a), show that x=f(y)

Solve: ax - by = 1 bx + ay = 0

If p(x) = ax^(2) + bx + c , then -b/a is equal to

2 (ax+by)^(2)-(bx+ay)^(2)

find f(x)=(ax-b)/(bx-a) show that x=f(y)