Home
Class 11
MATHS
Lim(x rarr oo)(1)/(n^(3)){1+3+6+...+(n(n...

Lim_(x rarr oo)(1)/(n^(3)){1+3+6+...+(n(n+1))/(2)}=

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr oo) 1/n^(3) { 1+3+6+...+ (n(n+1))/2} =

lim_(n rarr oo)2^(1/n)

lim_ (n rarr oo) (1) / (n ^ (3)) {1 + 3 + 6 + ...... + (n (n + 1)) / (2)}

lim_(n rarr oo)(n^(2))/(1+2+3+...+n)

lim_(n rarr oo)(n^(2))/(1+2+3+...+n)

lim_(n rarr oo)(n^(2))/(1+2+3+...+n)

lim_(n rarr oo)(n^(2))/(1+2+3+...+n)

lim_(n rarr oo)(n^(2))/(1+2+3+...+n)

lim_ (x rarr oo) ((1 ^ ((1) / (x)) + 2 ^ ((1) / (x)) + 3 ^ ((1) / (x)) ++ n ^ ((1 ) / (x))) / (n)) ^ (nx), n in N

Show that lim_(n rarr oo)((1)/(n+1)+(1)/(n+2)+...+(1)/(6n))=log6