Home
Class 12
MATHS
int(ln((1+x)/(1-x))/(1-x^2)dx...

`int(ln((1+x)/(1-x))/(1-x^2)dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

int(ln(In((1+x)/(1-x))))/(1-x^(2))dx

int(1)/((cos^(2)(ln((1+x)/(1-x)))(1-x^(2))))dx

int(ln((x-1)/(x+1)))/(x^2-1)dx is equal to (a) 1/2(ln((x-1)/(x+1)))^2+C (b) 1/2(ln((x+1)/(x-1)))^2+C (c) 1/4(ln((x-1)/(x+1)))^2+C (d) 1/4(ln((x+1)/(x-1)))^2+C

int(ln((x-1)/(x+1)))/(x^2-1)dx is equal to (a) 1/2(ln((x-1)/(x+1)))^2+C (b) 1/2(ln((x+1)/(x-1)))^2+C (c) 1/4(ln((x-1)/(x+1)))^2+C (d) 1/4(ln((x+1)/(x-1)))^2+C

int(ln((x-1)/(x+1)))/(x^2-1)dx is equal to (a) 1/2(ln((x-1)/(x+1)))^2+C (b) 1/2(ln((x+1)/(x-1)))^2+C (c) 1/4(ln((x-1)/(x+1)))^2+C (d) 1/4(ln((x+1)/(x-1)))^2+C

If int(ln((x-1)/(x+1)))/(x^(2)-1)dx=(1)/(a)*(ln|(x-1)/(x+1)|)^(b)+c , then a^(2)-b^(2)-ab is equal to __________.

If int(ln((x-1)/(x+1)))/(x^(2)-1)dx=(1)/(a)*(ln|(x-1)/(x+1)|)^(b)+c , then a^(2)-b^(2)-ab is equal to __________.

int(ln((x-1)/(x+1)))/(x^(2)-1)dx is equal to (a) (1)/(2)(ln((x-1)/(x+1)))^(2)+C(b)(1)/(2)(ln((x+1)/(x-1)))^(2)+C(c)(1)/(4)(ln((x-1)/(x+1)))^(2)+C(d)(1)/(4)(ln((x+1)/(x-1)))^(2)+C

int(ln((x-1)/(x+1)))/(x^(2)-1)dx is equal to a) 1/2(ln((x-1)/(x+1)))^(2)+C b) 1/2(ln((x+1)/(x-1)))^(2)+C c) 1/4(ln((x-1)/(x+1)))^(2)+C d) 1/4(ln((x+1)/(x-1)))

int(log(1-x))/(1-x)dx