Similar Questions
Explore conceptually related problems
Recommended Questions
- lim(x rarr1)((sum(k=1)^(200)x^(k))-200)/(x-1)=
Text Solution
|
- lim (x rarr1) ([sum (k = 1) ^ (100) x ^ (k)] - 100] ()) / (x-1)
Text Solution
|
- Evaluate the limit: ("lim")(xvec1)(sumk=1)( 100 x^k-100)/(x-1)
Text Solution
|
- If sum(k=0)^(200)i^(k)+prod(p=1)^(50)i^(p)=x+iy then (x,y) is
Text Solution
|
- lim (x rarr1) ((sum (k = 1) ^ (200) x ^ (K)) - 200) / (x-1)
Text Solution
|
- lim(x rarr1)([x])^((1)/(x-1))
Text Solution
|
- 8. Prove that lim(x rarr1^(+))((1)/(x-1))!=lim(x rarr1^(-))((1)/(x-1))
Text Solution
|
- lim(x rarr1)(log x)/(x-1)=
Text Solution
|
- If lim(x rarr1)cos ec^(-1)((k^(2))/(ln x)-(k^(2))/(x-1)) exists, then ...
Text Solution
|