Home
Class 12
MATHS
If int(f^(prime)(x)g(x)-g^(prime)(x)f(x)...

If `int(f^(prime)(x)g(x)-g^(prime)(x)f(x))/((f(x)+g(x))sqrt(f(x)g(x)-g^2(x)))d x=sqrt(m)tan^(- 1)(sqrt((f(x)-g(x))/(ng(x))+C)` where `m,n in N` and 'C' is constant of integration `(g(x) > 0)`. Find the value

Promotional Banner

Similar Questions

Explore conceptually related problems

int \ {f(x)*g^(prime)(x)-f^(prime)(x)g(x))/(f(x)*g(x)){logg(x)-logf(x)} \ dx

int((f'(x)g(x)+f(x)g'(x)))/((1+(f(x)g(x))^(2)))dx is where C is constant of integration

Let g^(prime)(x)>0a n df^(prime)(x) g(f(x-1)) f(g(x+1))>f(g(x-1)) g(f(x+1))

int_( is )((f(x)g'(x)-f'(x)g(x))/(f(x)g(x)))*(log(g(x))-log(f(x))dx

int(f(x)g'(x)-f'(x)g(x))/(f(x)g(x)) [ log (g(x))-log(f(x))]dx=

int(f(x)*g'(x)-f'(x)g(x))/(f(x)*g(x)){log g(x)-log f(x)}dx

int (f(x).g^(')(x)-f^(')(x)g(x))/(f(x).g(x)).[log g(x)-log f(x)]dx =

If int(x-1)/((x+x sqrt(x)+sqrt(x))+sqrt(sqrt(x)(x+1)))dx=4tan^(-1)(g(x))+c where c is constant of integration, then g^(2)(1)=

If int(x-1)/(x^(2)sqrt(2x^(2)-2x-1))dx=(sqrt(f(x)))/(g(x))+c then the value of f(x) and g(x) is