Home
Class 12
MATHS
" 6."tan^(-1)((3x-x^(3))/(1-3x^(2))),-(1...

" 6."tan^(-1)((3x-x^(3))/(1-3x^(2))),-(1)/(sqrt(3))

Promotional Banner

Similar Questions

Explore conceptually related problems

Differentiate tan^(-1)((3x-x^(3))/(1-3x^(2))), if -(1)/(sqrt(3)) (1)/(sqrt(3))(3)*xlt1/sqrt(3)

Differentiate tan^(-1)((3x-x^(3))/(1-3x^(2))),|x|<(1)/(sqrt(3)) w.r.t tan ^(-1)((x)/(sqrt(1-x^(2))))

tan^(-1)x+(tan^(-1)(2x))/(1-x^(2))=tan^(-1)((3x-x^(3))/(1-3x^(2))),|x|<(1)/(sqrt(3))

Prove that tan^(-1)x+"tan"^(-1)(2x)/(1-x^(2))=tan^(-1)((3x-x^(3))/(1-3x^(2))),|x|lt(1)/(sqrt(3))

Differentiate tan^(-1)((3x-x^(3))/(1-3x^(2))), if x>(1)/(sqrt(3))

Differentiate tan^(-1)((3x-x^(3))/(1-3x^(2))), if x<-(1)/(sqrt(3))

Differentiate tan^(-1)((3x-x^(3))/(1-3x^(2))), if -1/(sqrt(3))

Prove that tan^(-1)x+tan^(-1)""(2x)/(1-x^(2))=tan^(-1)((3x-x^(3))/(1-3x^(2)))absxlt(1)/(sqrt(3)).

Prove that tan^(-1)x+"tan"^(-1)(2x)/(1-x^(2))=tan^(-1)((3x-x^(3))/(1-3x^(2))),|x|lt1/(sqrt(3))