Home
Class 12
MATHS
For a complex number z, if arg(z) in (-p...

For a complex number z, if `arg(z) in (-pi, pi], ` then `arg(1+cos.(6pi)/(5)+I sin.(6pi)/(5))` is (here `i^(2)-1`)

Promotional Banner

Similar Questions

Explore conceptually related problems

For a complex number Z. If arg(Z) in (-pi, pi] , then arg{1+cos.(6pi)/(7)+isin.(6pi)/(7)} is (here i^(2)=-1 )

For a complex number Z. If arg(Z) in (-pi, pi] , then arg{1+cos.(6pi)/(7)+isin.(6pi)/(7)} is (here i^(2)=-1 )

Find the complex number z if arg (z+1)=(pi)/(6) and arg(z-1)=(2 pi)/(3)

Let (z, w) be two non-zero complex numbers. If z +i w = 0 and arg (z w) = pi , then arg z is equal to a) pi b) (pi)/(2) c) (pi)/(4) d) (pi)/(6)

z = (1+cos6 pi)+i sin6 pi

The argument of the complex number sin((6pi)/(5))+i(1+cos.(6pi)/(5)) is

Let z be a complex number such that |z| = 4 and arg (z) = 5pi//6, then z =

Find the amplitude of the complex number "sin" (6pi)/(5) + i (1- "cos" (6pi)/(5))

The principal value of arg (z) , where z=1+cos((8pi)/5)+i sin((8pi)/5) (where, i=sqrt-1) is given by

The principal value of arg (z) , where z=1+cos((8pi)/5)+i sin((8pi)/5) (where, i=sqrt-1) is given by