Home
Class 12
MATHS
" Number of solutions of equation "|[sin...

" Number of solutions of equation "|[sin theta,cos theta,sin2 theta],[cos(theta+(pi)/(6)),cos(theta+(2 pi)/(3)),-sin(2 theta+(pi)/(3))],[-cos(theta-(pi)/(6)),cos(theta-(2 pi)/(3)),sin(2 theta+(2 pi)/(3))]|=0" in "[0,2 pi]" is- "

Promotional Banner

Similar Questions

Explore conceptually related problems

|(sin theta, cos theta, sin2theta),(sin(theta+(2pi)/(3)),cos(theta+(2pi)/(3)),sin(2theta+(4pi)/(3))),(sin(theta-(2pi)/(3)),cos(theta-(2pi)/(3)),sin(2theta-(4pi)/(3)))|=

The value of the determinant |sin theta,cos theta,sin2 thetasin(theta+(2 pi)/(3)),cos(theta+(2 pi)/(3)),sin(2 theta+(4 pi)/(3))sin(theta-(2 pi)/(3)),cos(theta-(2 pi)/(3)),sin(2 theta-(4 pi)/(3))

The value of the determinant |[sintheta, costheta, sin2theta] , [sin(theta+(2pi)/3), cos(theta+(2pi)/3), sin(2theta+(4pi)/3)] , [sin(theta-(2pi)/3), cos(theta-(2pi)/3), sin(2theta-(4pi)/3)|

The value of the determinant |(sintheta, costheta, sin2theta) , (sin(theta+(2pi)/3), cos(theta+(2pi)/3), sin(2theta+(4pi)/3)) , (sin(theta-(2pi)/3), cos(theta-(2pi)/3), sin(2theta-(4pi)/3))|

If 2 sin(theta+(pi)/(3))=cos(theta-(pi)/(6)) , then tantheta =

Distance between the points (a cos(theta+((2 pi)/(3))),a sin(theta+((2 pi)/(3)))) and (a cos(theta+((pi)/(3))),a sin(theta+((pi)/(3)))) is

Find the number of solution of the equation 2(cos theta+cos2 theta)+sin2 theta(1+2cos theta)=2sin thetain theta in[0,3 pi]