Home
Class 12
MATHS
" 21."(dy)/(dx)-x sin^(2)x=(1)/(x log x)...

" 21."(dy)/(dx)-x sin^(2)x=(1)/(x log x)

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the following differential equation: (dy)/(dx)-x sin^(2)x=(1)/(x log x)

Solve the following differential equations (dy)/( dx) - x^2 sin^2x = (1)/( x log x)

Find the general solution of the Differential Equation : (dy/dx) - x sin x = 1/(x log x)

Find(dy)/(dx) for y=x sin x log x

Solve the following linear differential equation (dy)/(dx)+(y)/(x log x)=(sin 2x)/(log x)

If y=(sin x)^((sin x))srove that (dy)/(dx)=(y^(2)cos x)/((1-y log sin x))

If y = (x sin^(-1) x)/(sqrt(1 - x^2)) + "log" sqrt(1 - x^2) , prove that (dy)/(dx) = (sin^(-1)x)/((1 - x^2)^(3//2))

If y=sin(x^(x)), prove that (dy)/(dx)=cos(x^(x))x^(x)(1+log x)

If y=x sin(log x)+x log x, prove that x^(2)(d^(2)y)/(dx^(2))-x(dy)/(dx)+2y=x log x

Find (dy)/(dx) for y=(sin x)^(log x)