Home
Class 11
MATHS
cot((pi)/(4)+(x)/(2))=tan x+sec x...

cot((pi)/(4)+(x)/(2))=tan x+sec x

Promotional Banner

Similar Questions

Explore conceptually related problems

Provet that "tan "((pi)/(4)+(x)/(2)) = " tan x + sec x "

Provet that " tan " ((pi)/(4) +(x)/(2)) + " tan " ((pi)/(4)-(x)/(2)) = " 2 sec x"

int_((pi)/(6))^((pi)/(4))(tan x+cot xdx)/(tan^(-1)x+cot^(-1)x)

int_(0)^( pi)(x tan x)/(tan x+sec x)*dx=(pi(pi-2))/(2)

The value of the definite integral int_(0)^((pi)/(2))(dx)/(tan x+cot x+cos ecx+sec x) is

If theta in ((-pi)/(4), (pi)/(4)) and x=log_(e )[cot((pi)/(4)+theta)] then prove that (i) cosh x= sec 2theta" " (ii) sinh x=-tan 2theta

(tan x)/(1-cot x)-(cot x)/(1-tan x)=(sec x cos(x+1))

int_ (0) ^ (pi) (x tan x) / (sec x cos ecx) = (pi ^ (2)) / (4)

(sec2x-tan2x) equals a tan(x-(pi)/(4))b)tan((pi)/(4)-x)c cot(x-(pi)/(4))d tan^(2)(x+(pi)/(4))

int_(0)^((pi)/(2)) (3 tan x + 4 cot x)/(tan x + cot x)dx