Home
Class 11
MATHS
1+(x)/(1!)+(x^(2))/(2!)+(x^(3))/(3!)+......

1+(x)/(1!)+(x^(2))/(2!)+(x^(3))/(3!)+.........

Promotional Banner

Similar Questions

Explore conceptually related problems

The coefficient of x^(n) in (1+x)/(1!)+((1+x)^(2))/(2!)+((1+x)^(3))/(3!)+....

1+(2x)/(1!)+(3x^(2))/(2!)+(4x^(3))/(3!)+..infty is equal to

1+(2x)/(1!)+(3x^(2))/(2!)+(4x^(3))/(3!)+..infty is equal to

If y = 1 +(x)/(|__1) +(x^2)/(|__2) +(x^3)/(|__3) + ..........oo then (dy)/(dx) = …………. .

Coefficient of x^n in (1+x)/(1!) +((1+x)^2)/(2!) + ((1+x)^3)/(3!) + .......=

Let l _(n) =int _(-1) ^(1) |x|(1+ x+ (x ^(2))/(2 ) +(x ^(3))/(3) + ..... + (x ^(2n))/(2n))dx if lim _(x to oo) l _(n) can be expressed as rational p/q in this lowest form, then find the value of (pq(p+q))/(10)

If the function f (x)=-4e^((1-x)/(2))+1 +x+(x ^(2))/(2)+ (x ^(3))/(3) and g (x) =f ^(-1)(x), then the value of g'((-7)/(6)) equals :