Home
Class 9
MATHS
" Q.3.Prove that "(a+b+c)'-a^(2)-b^(2)-c...

" Q.3.Prove that "(a+b+c)'-a^(2)-b^(2)-c^(t)=3(a+b)(b+c)(c+a)" ."

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (a+b+c)^(3)-a^(3)-b^(3)-c^(3)=3(a+b)(b+c)(c+a) .

Prove that (a+b+c)^(3)-a^(3)-b^(3)-c^(3)=3(a+b)(b+c)(c+a) .

Prove that (a+b+c)^(3)-a^(3)-b^(3)-c^(3)=3(a+b)(b+c)(c+a)

Prove that :(a+b+c)^(3)-a^(3)-b^(3)-c^(3)=3(a+b)(b+c)(c+a)

Prove that (a+b+c)^3 - a^3-b^3-c^3 = 3(a+b)(b+c)(c+a).

Prove that (a+b+c)^3-a^3-b^3-c^3=3(a+b)(b+c)(c+a)

Prove that (a-2b)^3+(2b-c)^3+(c-a)^3 =3(a-2b)(2b-c)(c-a)

Prove that (a+b+c)^3-(a^3+b^3+c^3)=3(b+c)(c+a)(a+b)

Prove that (a+b+c)^(3) =a^(3)+b^(3)+c^(3)+3(b+c) (c+a) (a+b)

Prove that 8a^3-(a+b)^3-(a-c)^3-(c-b)^3=3(a-b)(a+c)(2a+b-c)