Home
Class 11
MATHS
lim(x rarr0)((e^(x)-1)/(x))=...

lim_(x rarr0)((e^(x)-1)/(x))=

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)((a^(x)-1)/(x))=log_(e)a

lim_(x rarr0)((e^(x)-x-1)/(x))

Using lim_(x rarr 0) (e^(x)-1)/(x)=1, deduce that, lim_(x rarr 0) (a^(x)-1)/(x)=log_(e)a [agt0].

Compute lim_(x rarr0)(e^(3x)-1)/(x)

Prove that lim_(x rarr0)(e^(7x)-1)/(x)=7

Evaluate the limits,if exist lim_(x rarr0)(e^(4x)-1)/(x)

The value of lim_(x rarr 0) ((e^(x)-1)/x)

Evaluate: lim_(x rarr 0)(e^(4x)-1)/(x)

The value of lim_(x rarr 0) (e^(x2)-1)/(x) is

The value of a for which lim_(x rarr0)((e^(x)-1)^(4))/(sin((x^(2))/(a^(2))))log_(e){1+(x^(2))/(2)}=8, is