Similar Questions
Explore conceptually related problems
Recommended Questions
- " 8.Prove that "lim(x rarr0)(xe^(x)-log(1+x))/(x^(2))=(3)/(2)
Text Solution
|
- lim(X rarr0)log|(log(1+x))/(x)|
Text Solution
|
- lim(x rarr0)(log cos x)/(sin^(2)x)
Text Solution
|
- lim(x rarr0)(x+ln(sqrt(x^(2)+1)-x))/(x^(3))
Text Solution
|
- Let a=lim(x rarr0)x cot x and b=lim(x rarr0)x log x then
Text Solution
|
- lim(x rarr0)(xe^(x)-log(1+x))/(x^(2)) equals
Text Solution
|
- lim(x rarr0)(xe^(x)-log(1+x))/(x^(2))
Text Solution
|
- lim (x rarr0) (ln (1 + 3x)) / (3 ^ (x) -1)
Text Solution
|
- lim(x rarr 0) (ln(2+x)+ln0.5)/x is equal to
Text Solution
|