Home
Class 12
MATHS
" 8.Prove that "lim(x rarr0)(xe^(x)-log(...

" 8.Prove that "lim_(x rarr0)(xe^(x)-log(1+x))/(x^(2))=(3)/(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(x cos x-log(1+x))/(x^(2))

lim_(x rarr0)(xe^(x)-log(1+x))/(x^(2)) equals

lim_(x rarr0)(sin x+log(1-x))/(x^(2))

lim_(x rarr0)(sin x+log(1-x))/(x^(2))

lim_(x rarr0)(log_(e)(1+x)-x)/(x^(2))=-(1)/(2)

lim_(x rarr0)(e^(x)+log(1+x)-(1-x)^(-2))/(x^(2))

lim_(x rarr0)(log(a+x)-log(a-x))/(x)

lim_(x rarr0)(ln(1+x)^(1+x))/(x^(2))-(1)/(x)

"lim_(x rarr0)[(log(2+x)-log(2-x))/(x)]

lim_(x rarr0)(x^(2)-1)/(x^(2))