Home
Class 12
MATHS
" Solution of "ydx-xdy=x^(2)ydx" is "...

" Solution of "ydx-xdy=x^(2)ydx" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

Write the solution of ydx-xdy=x^2ydx .

Solve ydx-xdy=x^(2)ydx .

Solve ydx-xdy=x^(2)ydx .

The solution of ydx - xdy = xydx is

y log ydx-xdy=0

xdy-ydx=xy^(2)dx

The solution of the equation ydx-xdy=x^2ydx is (A) y^2e^(-x^2/2)=C^2x^2 (B) y=Cxe^(x^2/2) (C) x^2=C^2y^2e^(x^2) (D) ye^(x^2)=x

The solution of the equation ydx-xdy=x^2ydx is (A) y^2e^(-x^2/2)=C^2x^2 (B) y=Cxe^(x^2/2) (C) x^2=C^2y^2e^(x^2) (D) ye^(x^2)=x

solve: ydx-xdy=xydx