Home
Class 11
MATHS
" If "x(n)>x(n-1)>.........>x(2)>x(1)>1,...

" If "x_(n)>x_(n-1)>.........>x_(2)>x_(1)>1," then the value of "log_(x_(1))log_(x_(2))log_(x_(3)).........log_(x_(n))x_(n)^(x_(n-1))

Promotional Banner

Similar Questions

Explore conceptually related problems

If x_n > x_(n-1) > ..........> x_3 > x_1 > 1. then the value of log_(x_1) [log_(x _2) {log_(x_3).........log_(x_n) (x_n)^(x_(r=i))}]

If x_n > x_(n-1) > ..........> x_3 > x_1 > 1. then the value of log_(x_1) [log_(x _2) {log_(x_3).........log_(x_n) (x_n)^(x_(r=i))}]

If x_n > x_(n-1) > ..........> x_3 > x_1 > 1. then the value of log_(x_1) [log_(x _2) {log_(x_3).........log_(x_n) (x_n)^(x_(r=i))}]

If x_n > x_(n-1) > ..........> x_3 > x_1 > 1. then the value of log_(x1) [log_(x2) {log_(x3).........log_(x4) (x_n)^(x_(r=i))}]

The value of x,log_((1)/(2))x>=log_((1)/(3))x is

the value of log x+log(1+(1)/(1+x))+log(1+(1)/(2+x))+............+log(1+(1)/(n-1+x))

The value of x, log_(1/2)x >= log_(1/3)x is

(1)/(log_(2)x)+(1)/(log_(3)x)+......(1)/(log_(43)x)=(1)/(log_(43)!x)

If x_(n)gt1 for all n in N , then the minimum value of the expression log_(x_(2))x_(1)+log_(x_(3))x_(2)+...+log_(x_(n))x_(n-1)+log_(x_(1))x_(n) is

If x_(n)gt1 for all n in N , then the minimum value of the expression log_(x_(2))x_(1)+log_(x_(3))x_(2)+...+log_(x_(n))x_(n-1)+log_(x_(1))x_(n) is