Home
Class 11
MATHS
(1-i)^(n)(1-(1)/(i))^(n)=2^(n)" for all ...

(1-i)^(n)(1-(1)/(i))^(n)=2^(n)" for all values of "n in N

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that (1-i)^(n)(1-(1)/(i))^(n)=2^(n) for all n in N

If n is a positive integer and (1+i)^(2n)+(1-i)^(2n)=kcos(npi//2) then the value of k is

Prove that i^(n)+i^(n+1)+i^(n+2)+i^(n+3)=0 , for all n in N .

If ((1+i)/(1-i))^n =1 , then the smallest value of n is :

Find the value of i^n+i^(n-1)+i^(n-2)+i^(n-3) for all n in Ndot

Let agtbgt0 and I(n)=a^((1)/n)-b^((1)/(n)),J(n)=(a-b)^((1/(n)) for all nge2 . Then

Find the value of i^n+i^(n+1)+i^(n+2)+i^(n+3) for all n in Ndot

Find the value of i^n+i^(n+1)+i^(n+2)+i^(n+3) for all n in Ndot

Find the value of i^n+i^(n+1)+i^(n+2)+i^(n+3) for all n in Ndot

Find the value of i^(n)+i^(n+1)+i^(n+2)+i^(n+3) for all n in N.